UNIVERSITY OF TWENTE.

3D UNDERGROUND MODELLING

Dr. Mila Koeva and Dr. Richard Sliuzas

UNIVERSITY OF TWENTE ITC FACULTY - DEPARTMENT OF URBAN AND REGIONAL PLANNING AND GEO-INFORMATION MANAGEMENT (PGM) DEPARTMENT ENSCHEDE, THE NETHERLANDS

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Who we are / research focus

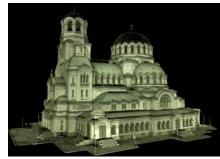
Recent 3D modelling underground research

MILA KOEVA BACKGROUND

- MSc. degrees in Engineering (Geodesy) (UACG)
- PhD "3D modelling in architectural photogrammetry" (UACG)

http://regtour.lovech.bg/

- ITC- EOS-Lecturer in Photogrammetry and RS
- ITC- PGM-Assistant Professor in
 - **3D Land Information**

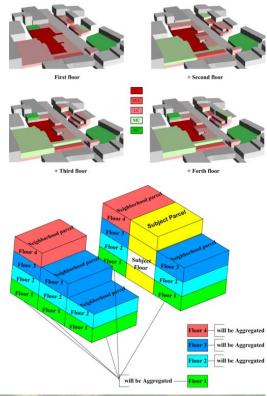


RESEARCH

Research papers related with 3D:

- 3D modelling and interactive web-based visualization of cultural heritage objects (XXIII ISPRS Congress ISPRS)
- Integrating spherical panoramas and maps for visualization of cultural heritage objects using virtual reality technology. In: Sensors
- Investigation of 3D modelling techniques.(GIM)
- Challenges for updating 3D cadastral objects using LiDAR and image-based point clouds (FIG)
- Public participation using 3D city models: e-participation opportunities in Kenya.(GIM)
- A global perspective on **3D cadastral development** (ISCAS)
- Transit-oriented development (TOD) assessment using 3D visualisation and modelling (13 th Unrban planning conference)
 - 3D modeling of underground space for urban

planning and management – providing basic planning insight


RICHARD SLIUZAS BACKGROUND

- MSc. ITC, Urban Surveys and Human Settlement Anslysis
- PhD UU Geographical Sciences Informal settlement development and planning, Dar es Salaam, Tanzania

 ITC- PGM- Associate Professor Urban Planning – modelling (informal) urban development, planning, vulnerability and risk reduction, risk perception and public policy, resettlement policy.

URBAN PLANNING AND 3D GIS

- UNISDR Urban Planning Advisory Group
- AESOP Resilience and Risks Mitigation Strategies
- Above ground:
- Compact city development: high density, mixed uses, externalities and risk management. (MILU Project, Istanbul, Tehran, Dar es Salaam)
 Underground:
- Critical infrastructures and risk reduction planning, design and construction, multi-functional use in hazardous situations CHARIM.NET
- Sub-surface characteristics > land use and construction impacts
 - Rotterdam, Manila and Jakarta

TITLE

3D modeling of underground space for urban planning and management – providing basic planning insight Maryam Ghodsvali

GENERAL OBJECTIVE

To develop an integrated 3D model of subsurface/surface conditions and their interactions to support communication and knowledge exchange between planners and subsurface specialists.

3D modeling of underground space for urban planning and management – providing basic planning insight

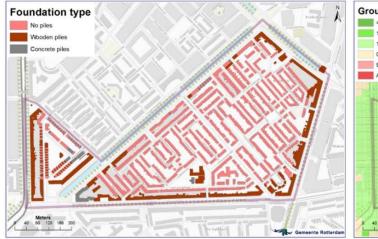


Figure 5: Foundation Types in <u>Bloemhof</u> Source: Municipality of Rotterdam, July 2017

Figure 7: A cracked building in Bloemhof Source: Private photo by the author, 20 July 2017

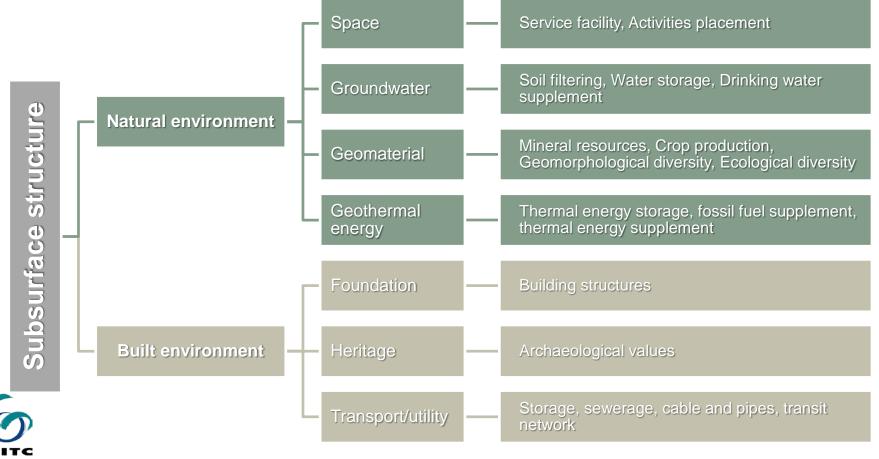


Figure 6: Groundwater level in <u>Bloemhof</u> Source: Municipality of Rotterdam, July 2017

Figure 8: A collapsed building in Bloemhof Source: Private photo by the author, 20 July 2017

DONE; Overview

¢ Concept ♦	Sub-objective	Question
Awareness	Surface/subsurface interactions	Characterising subsurface components
Awareness		Understanding surface/subsurface connections
	Demand-driven knowledge exchange	Identifying specialised urban need information
Connection		Relating corresponding information
		Exploring quality specifications for data
T	Information transformation	Harmonising/categorising information regarding urban needs
Interaction		Assessing the effectiveness of transformed data
	Integrated 3D modeling	Exploring the existing 3D modeling methods
	Integrated 5D modeling	Designating an integrated 3D modeling method
Integration	Model validation	Evaluating model effectiveness
		Validating the model
		Maintenance procedure



DONE; First sub-objective Surface/subsurface interactions

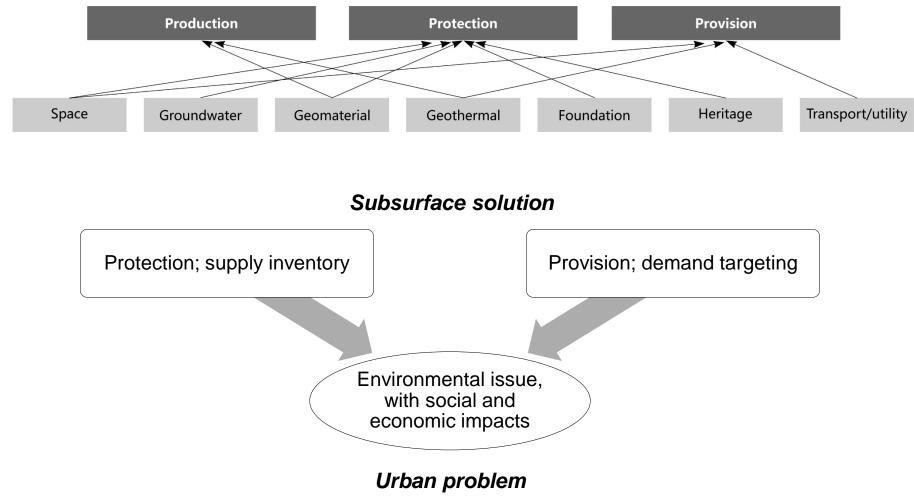
Research questions:

1. What are the types and characteristics of subsurface structures (i.e. natural and artificial)?

Characteristics of subsurface structure and its contribution to urban (re)development.

DONE; Second sub-objective Demand-driven knowledge exchange

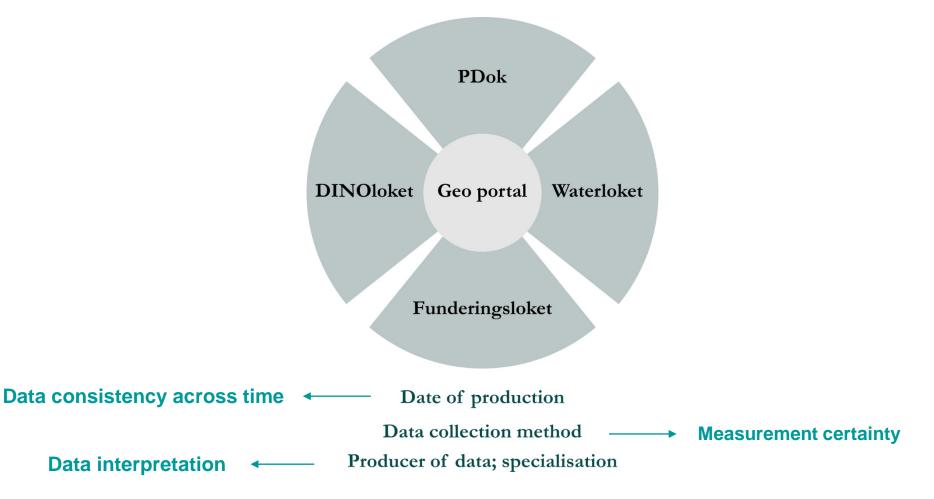
Research questions:


What types of surface/subsurface information are required for urban planners and subsurface specialists to develop an integrated (re)development plan?
5 expert interviews

Primary theme	Sub-theme	Weight	
Geological structure	Condition of soil layers	12.8%	25.6%
	Soil quality	5.1%	
	Soil penetration	7.7%	
Heavy construction development	Foundation	7.7%	18.0%
	Building density	10.3%	
Greenery	Green spaces	12.8%	12.8%
Hydrological challenges	Water infiltration	12.8%	43.6%
	Surface water flooding	20.5%	
	Groundwater discharge	10.3%	

DONE; Second sub-objective Demand-driven knowledge exchange

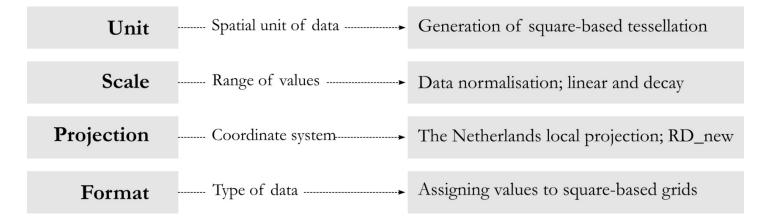
Research questions:


2. How to relate corresponding surface and subsurface information?

DONE; Second sub-objective Demand-driven knowledge exchange

Research questions:

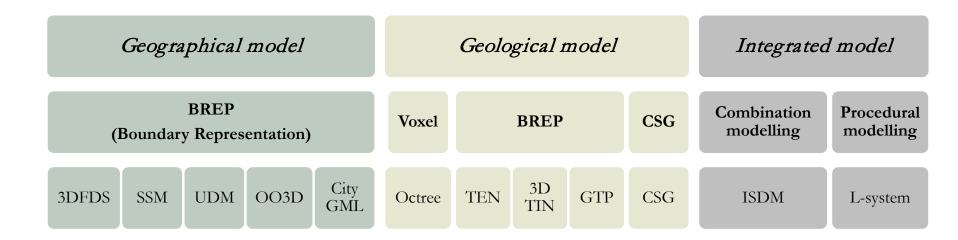
3. What are the quality specifications for required data?



DONE; Third sub-objective Information transformation

Research questions:

1. How to harmonise and categorise surface/subsurface data across urban need aspects?


Data harmonisation

DONE; Fourth sub-objective Integrated 3D modelling

Research questions:

1. What are the existing methods to develop a 3D surface/subsurface model?

Geographical (surface structure) and geological (subsurface structure) – are the main types of 3D modelling

DONE; Fourth sub-objective Integrated 3D modelling

Research questions:

2. What is the most suitable method to have high interoperability level among data?

Procedural modelling method; L-system

3D MODELLING METHOD COMPARISON					
Comparison Factor	Comparison Dimension	Comparison Indicator			
Level of Detail	Attributes of objects	Level of detailed information			
	Multi-value objects	Model base			
	Storage capacity	Data size			
Visual Efficiency	Simplicity of models concepts	Primitive objects/elements			
	Adjacency of spatial objects	Geometry objects/elements			
	Integration of separate models	Main using idea			
Understandability Level	Complexity of spatial objects	Spatial structure			
	Spatially assign of new information	Position query			

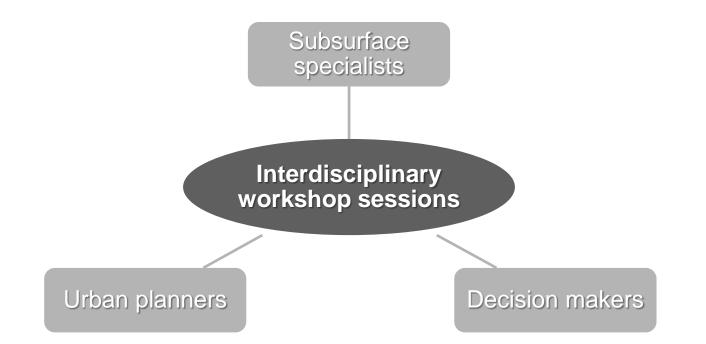
TO DO; Fourth sub-objective Integrated 3D modelling

Research questions:

2. What is the most suitable method to have high interoperability level among data?

This study develops an integrated 3D model based on procedural L-system 3D

modelling method using CGA (Comp. generated architecture) shape grammar.


Stage		ArcGIS Pro	CityEngine
Procedural geometry	2D to 3D procedural engine	Yes	Yes
	Interactive design tool (Dynamic reports, handles, local edits, etc.)	No	Yes
	Rule authoring	No	Yes
	Dynamic 3D streets and blocks	No	Yes
3D data types	BIM import	Partly	Partly
	Multi-patch editing	No	Yes
	3D export	No	Yes
3D visualisation	Scales	Global and local	Local
	Rendering	Streaming, adaptive	In-memory
	Animation	Yes	No
	Analysis	Yes	No

12/13

TO DO; Fifth sub-objective Model validation

Research questions:

- 1. How does the model contribute to planners' and subsurface specialists' communications?
- 2. What are the strengths, weaknesses, opportunities, and threats of the model?
- 3. How to maintain the model?

Participation of different countries

Organizer: the Municipality of Rotterdam

UNIVERSITY OF TWENTE.

THANK YOU FOR YOUR ATTENTION!

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION